In vivo blockade of T cell development reveals alternative pathways for generation of intraepithelial lymphocytes in mice

Surechimg Mondoona, Kensuke Shibatab, Yasunobu Yoshikia

a Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
b Division of Ophthalmology, Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan

ARTICLE INFO

Keywords:
Thymus
Intestinal lymphocytes
Cell differentiation
Transcription factors
T cells

ABSTRACT

Intraepithelial lymphocytes (IELs) are resident cells localized within the intestinal epithelia and play an important role in regulating gut inflammations and host defense against pathogens. CD8α+ TCRβα+ IELs are heterogeneous populations that are generated from T cell precursors including CD4+ CD8α− double-negative (DN) cells and CD4+ CD8α+ double-positive (DP) cells. However, developmental pathways of TCRβα+ IELs remained unclear. To gain insight into the mechanisms, we generated mice (Bcl11bΔDN2 mice) that lack thymic precursors (DN CD5+ TCRβ+ cells) for CD4− CD8αα+ TCRβα+ IELs. Unexpectedly, we found that, in the absence of the precursors in thymi of Bcl11bΔDN2 mice, CD4− CD8αα− TCRβα+ IELs were still present in the intestine though the number was reduced. Adoptive transfer experiment showed that their precursors were highly enriched in CD8α− TCRβ− thymocytes. The CD4− CD8αα− TCRβα+ IELs in Bcl11bΔDN2 mice are distinguished by Thy1.2 expression and are indeed present in WT mice. Taken together, our study reveal a novel developmental pathway for CD8αα− TCRβα+ IELs.

1. Introduction

Intestine in mammals is one of the mucosal tissues that are continuously exposed to challenges by pathogenic organisms in ingested food and water. Intraepithelial lymphocytes are localized within the epithelium of the intestine, and play an important roles in maintaining homeostasis by fighting against pathogens and regulating excessive inflammations [1–3]. Indeed, these populations are highly conserved in vertebrates including fish and mammals [4]. Therefore, elucidation of full pictures of developmental pathways of IELs provides us novel insights into T cell biology involved in mucosal immunity.

Bcl11b is a transcription factor essential for T cell development [5–7]. T cell development is initiated after migration of haematopoietic stem cells to the thymus. Most immature T cell precursors are identified by the lack of CD4 and CD8α expressions, known as double-negative (DN) cells. DN cells are further classified into 5 populations, DN1, DN2a, DN2b, DN3 and DN4 cells, as they mature. T cell identity is fixed at the DN2b stage at which Bcl11b has an indispensable role. Indeed, in Bcl11b-deficient mice, T cell development is completely blocked at the DN2a stage. DN4 cells become DP cells at which TCRα rearrangement occurs and then give rise to conventional αβ T cells and unconventional αβ T cells including invariant natural killer T (iNKT) cells and CD4− CD8αα− TCRβα+ IELs [8–11]. During the intrathymic development of CD4− CD8αα+ TCRβα+ IELs, DN CD5+ TCRβ+ cells were identified as their precursors in the thymus after the DP stage [9]. In contrast to αβ T cell development through the DP stage, iNKT cell subsets bypassing DP stage have been identified [12]. Thus, Bcl11b-deficient mice could be a novel tool for analysis of T cells derived from DN stages.

To gain insights into developmental pathways of TCRβα+ IELs, we generated mice in which T cell development was blocked before the DP stage by inducing T cell-specific disruption of Bcl11b (designated as Bcl11bΔDN2 mice hereafter), because Bcl11b-deficient mice were shown to be fatal around perinatal period [13,14]. Here we found that DN CD5+ TCRβ+ thymocytes were absent in Bcl11bΔDN2 mice. Unexpectedly, however, CD4− CD8αα+ TCRβα+ IELs were still present in the small intestine of Bcl11bΔDN2 mice. Thy1.2 expression was higher in CD4− CD8αα− TCRβα+ IELs from Bcl11bΔDN2 mice than those from WT mice. Adoptive transfer experiment suggested that precursors for Thy1.2− CD4− CD8αα− TCRβα+ IELs were enriched in CD8αα− TCRβ− thymocytes. Thus, we identify a novel developmental pathway for CD8αα− TCRβ− IEL subset.

Abbreviations: IELs, intraepithelial lymphocytes; DN, double negative; DP, double-positive; MHC, major histocompatibility complex
⁎ Corresponding author at: Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
E-mail address: kshibata1209@gmail.com (K. Shibata).

http://dx.doi.org/10.1016/j.imlet.2017.09.008
Received 8 July 2017; Received in revised form 21 September 2017; Accepted 23 September 2017
Available online 27 September 2017
0165-2478/ © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
2. Materials and methods

2.1. Mice

Bcl11b^{fl/fl} mice were provided by R. Kominami (Niigata University, Niigata, Japan). Rag1-Cre mice were provided by T. Rabbits (Leeds Institute of Molecular Medicine, Leeds, United Kingdom). CD3εΔ5/Δ5 mice were kindly provided by Bernard Malissen (Centre d’Immunologie de Marseille- Luminy, France). Bcl11b^{ΔMatT} mice were generated by crossing Bcl11b^{fl/fl} mice with MaT-Cre mice which were kindly provided by S. Yamasaki (Kyushu University, Fukuoka, Japan) [15]. 8–12 week-old mice were used throughout the experiments. Experiments were carried out in accordance with Guidelines for Animal Experiments. This study was approved by Committee of Ethics on Animal Experiments in the Faculty of Medicine, Kyushu University.

2.2. Cell preparation from various tissues

Small intestine tissues were dissected and Peyer’s Patches were carefully removed. After flushing of fecal contents with ice-cold HBSS, small intestines were opened longitudinally, gently rinsed several times of the same ice cold buffer and cut laterally into small pieces, and placed in 50 ml plastic tubes, incubated in 199 media buffer for 30 min at 37 °C with constant shaking in water bath. After centrifugation at 440 g for 5 min, pellets were resuspended in RPMI 1640 containing 10% FCS. Dissociated cells were filtered through the gauze mesh and cells were further purified using 40/70% Percoll gradient centrifugation for 20 min at 2200 rpm. Single cell suspensions of thymocytes were prepared by grinding the organs by ends of two glass slides.

2.3. Antibodies and flow cytometric analysis

The following antibodies were purchased from Biolegend (San Diego, CA): anti-TCRβ (H57-597), anti-CD8α (53–6.7), anti-CD8β (YTS156.7.7), anti-CD5 (53–7.3), Anti-CD4 (RM 4–5), anti-CD103 (2E7), anti-B220 (RA3-6B2) and anti-Thy1.2 (53–2.1). Anti-I-A/I-E (M5/114.15.2) mAb was obtained from eBioscience (San Diego, CA). FITC-conjugated anti-Bcl11b (Clone 25B6) mAb was obtained from Abcam. Dead cells were excluded adding propidium iodide. Intracellular staining was performed according to the manufacturer’s instructions (BD Biosciences). Stained cells were acquired on FACS Versa flow cytometer (BD Biosciences). The data were analyzed using FlowJo software version 9.9.4 (Tree Star).

2.4. Adoptive transfer experiment

After fluorescence-activated cell sorting by BD FACS Aria (BD Biosciences), cells (1 × 10^6 cells/mouse) were transferred into gender-matched CD3ε^{Δ5/Δ5} mice. At 7–8 weeks after transfer, mice were sacrificed for the analysis.

2.5. Statistical analysis

Statistical analysis was calculated by the Student t-test using Prism software (GraphPad Software, San Diego, CA). Differences with values of p < 0.05 were considered to be statistically significant.
3. Results

3.1. CD4⁻ CD8α⁺ TCRαβ⁺ IELs develop in the absence of DN CD5⁺ TCRβ⁺ thymocytes

As expected, due to the blockage of T cell development at the DN2a stage, DP cells were almost completely absent in the thymus of Bcl11bΔDN2 mice (Fig. 1A) and thereby DN CD5⁺ TCRβ⁺ precursors for CD4⁻ CD8α⁺ TCRαβ⁺ IELs were not observed (Fig. 1B and C). However, in the intestine of Bcl11bΔDN2 mice, CD4⁻ CD8α⁺ TCRαβ⁺ IELs were still able to develop in Bcl11bΔDN2 mice though the number was significantly reduced (Fig. 2A and C). In contrast, numbers of other IEL subsets were increased in Bcl11bΔDN2 mice. We confirmed that Bcl11b expressions were not observed in both TCRαβ⁺ thymocytes and TCRαβ⁺ IELs of Bcl11bΔDN2 mice (Fig. S1), suggesting that they were not leaky populations due to insufficient expression of Cre recombinase. To examine cell-intrinsic effects of Bcl11b which regulates T cell development [16], we generated mice in which Bcl11b was deleted in mature T cells (designated as Bcl11bΔMatT mice). However, proportional changes in TCRαβ⁺ IEL subsets were not evident in Bcl11bΔMatT mice suggesting less impact of Bcl11b deficiency after the development of TCRαβ⁺ IELs (Figs. 3 and S2). These results suggested that, in WT mice, Bcl11b-dependent DN CD5⁺ TCRβ⁺ cells were the most dominant precursors for CD4⁻ CD8α⁺ TCRαβ⁺ IELs. Moreover, Bcl11bΔDN2 mice revealed the presence of as-yet-unidentified precursors for CD4⁻ CD8α⁺ TCRαβ⁺ IELs.
3.2. Thy1.2 is a marker for CD4⁻ CD8αα⁻ TCRαβ⁺ IELs in Bcl11bΔDN2 mice

Next, we searched for the markers to identify CD4⁻ CD8αα⁻ TCRαβ⁺ IELs in Bcl11bΔDN2 mice. Consistent with previous reports [17,18], in WT mice, CD4⁻ CD8αα⁺ TCRαβ⁺ IELs were mostly negative for Thy1.2 (Fig. 4). In contrast, in Bcl11bΔDN2 mice, CD4⁻ CD8αα⁺ TCRαβ⁺ IELs were mostly positive for Thy1.2 similar to other TCRαβ⁺ IEL subsets (Figs. 4 and S3). CD5 expression on CD4⁻ CD8αα⁻ TCRαβ⁺ IELs was negative in both WT and Bcl11bΔDN2 mice. B220 and CD103 (also known as αE integrin) were shown to be additional markers for identification of CD4⁻ CD8αα⁻ TCRαβ⁺ IELs [19,20] and B220 expression but not CD103 expression was slightly higher in Bcl11bΔDN2 mice. These results suggested that CD4⁻ CD8αα⁺ TCRαβ⁺ IELs in Bcl11bΔDN2 mice were distinguished by expressions of Thy1.2.

3.3. Two types of CD4⁻ CD8αα⁻ TCRαβ⁺ IELs develop from distinct intrathymic precursors

To test the precursor activity, total thymocytes were transferred into CD3eΔ5/Δ5 mice devoid of all T cells. After 8 weeks post transfer, appreciable level of CD4⁻ CD8αα⁺⁺ TCRαβ⁺ IELs was observed (Fig. 5A). To further characterize the precursors, we transferred DN cells of Bcl11bΔDN2 mice into CD3eΔ5/Δ5 mice. As shown previously [9,21], we confirmed that WT DN cells gave rise to CD8α⁺⁺ TCRαβ⁺ IELs (Fig. S4) and the most dominant IEL subsets were CD4⁺ cells. However, after transfer with DN thymocytes from Bcl11bΔDN2 mice, we could not observe TCRαβ⁺ IELs (Fig. S4). Since CD8α⁺ TCRβ⁻ thymocytes were observed in Bcl11bΔDN2 mice (Fig. 1A), we next examined their precursor activity. After reconstitution with the CD8α⁺ TCRβ⁻ thymocytes from Bcl11bΔDN2 mice, CD4⁻ CD8αα⁺ TCRαβ⁺ IELs were observed and expressed Thy1.2 and importantly, these populations were also generated from CD8α⁻ TCRβ⁻ thymocytes from WT mice (Figs. S B, C and S5). These results suggested that CD8α⁻ TCRβ⁻ thymocytes contain precursors for Thy1.2⁺ CD4⁻ CD8αα⁺ TCRαβ⁺ IELs in both WT and Bcl11bΔDN2 mice.

4. Discussion

In the present study, we identified alternative pathways for the development of CD8α⁺⁺ TCRαβ⁺ IELs. Our data suggest that Bcl11bΔDN2 mice are the useful model to dissect the developmental pathways in TCRαβ⁺ IELs as well as αβ T cells [13].

Currently accepted developmental process about TCRαβ⁺ IELs was made by fate mapping approach clearly demonstrating the presence of DP cell-derived TCRαβ⁺ IELs (Fig. 3). However, the nature of DN cell-derived TCRαβ⁺ IELs remained to be elucidated [23]. The data using Bcl11bΔDN2 mice suggest the presence of DN cell-derived TCRαβ⁺ IELs. These results are reminiscent of recent study showing that DN cell-derived iNKT cells [12]. In this sense, it is interesting to see whether DN cell-derived iNKT cells develop in Bcl11bΔDN2 mice. Nevertheless, since a tiny DP population was observed in Bcl11bΔDN2 mice, we could not exclude the possibility that Thy1.2⁺ CD4⁻ CD8αα⁺ TCRαβ⁺ IELs developed from the DP stage.

Under normal condition, DP cell-derived Thy1.2⁺ CD8αα⁺ TCRαβ⁺ IELs predominate and Thy1.2⁺ CD8αα⁺ TCRαβ⁺ IELs are a minor population among total CD8α⁺ TCRαβ⁺ IELs. However, under lymphopenic condition, it was previously shown that DN cells were migrated to the intestine where CD8α⁺ TCRαβ⁺ IELs were generated [17]. These data support the idea that Thy1.2⁺ CD8αα⁺ TCRαβ⁺ IELs could be generated from DN cells. However, underlying mechanism for the lack of competitiveness of Thy1.2⁺ CD8αα⁺ TCRαβ⁺ IELs remains unknown.

Precursors for CD4⁻ CD8αα⁺ TCRαβ⁺ IELs were identified in DN CD5⁺ TCRβ⁻ thymocytes [9]. More recently, these populations were further classified into two sublineages based on requirement of TAK1 for their development [21]. Here we found that CD8α⁻ TCRαβ⁺ IELs were observed in mice that lack DN CD5⁺ TCRβ⁻ thymocytes and transfer experiment showed that CD8α⁻ TCRαβ⁻ thymocytes were
identified as precursors for Thy1.2⁺ CD4⁻ CD8αα⁺ TCRαβ⁺ IELs. These results suggest that at least two independent pathways for the development of CD4⁻ CD8αα⁺ TCRαβ⁺ IELs in the thymus. To understand differences between Thy1.2⁻ and Thy1.2⁺ CD8αα⁺ TCRαβ⁺ IELs, expression levels of markers related to functions such as NK markers (NK1.1, NKG2D, CD49b) and Granzyme B were compared, but we have not seen any differences so far (data not shown).

5. Conclusion

In conclusion, among heterogeneous IEL populations including CD4⁻ CD8αα⁺ TCRαβ⁺ IELs, CD4⁻ CD8αβ⁺ TCRαβ⁺ IELs and CD4⁺ TCRαβ⁺ IELs, our study provides us additional insights into the development of CD8αα⁺ TCRαβ⁺ IELs as depicted in the graphical figure (Fig. 6).
Confl icts of interest

The authors have no financial conflict of interest.

Acknowledgments

We thank Yumiko Kitada, Yoshiko Kurisaki and Akiko Yano for their secretarial assistance. This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas JSPS KAKENHI Grant Number JP 16H06496, Grant-in-Aid for Scientific Research B JSPS KAKENHI Grant Number JP 26293098 (Y.Y) and Grant-in-Aid for Scientific Research C JSPS KAKENHI Grant Number JP 16K08740 (K.S).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.imlet.2017.09.008.

References


